
Int. J. Solids Structures Vol. 23. No.9. pp. 1247-1268. 1987
Printed in Great Britain.

0020-7683/87 $3.00 + .00
© 19&7 Perpmon journals Ltd.

THE EFFECT OF MICRO-CRACK SYSTEMS ON THE
LOSS OF STIFFNESS OF BRITTLE SOLIDS

N. LAWS
Dcpllrtment of Mechanical Engineering. University of Pillsburgh. Pillsburgh, PA 15261.

U.S.A.

and

J. R. BROCKENBROUGH
Alcoa Laboratories, Alcoa Center, PA 15069, U.S.A.

(Received 26 May 1986; in revised form 29 December 1986)

Abstract-Micro-cracks in a fabricatcd ceramic reduce stiffness compared with the ideal ceramic.
Self-consistcnt estimates for stiffness reduction are obtained for a variety of crack shapes and
orientation distributions. Results are derived in terms ofa common measure ofcrack density which
allows different crack systems to be compared. In particular we consider cracking along grain
boundaries of a two-dimensional hexagonal array which leads to overall anisotropy of the ceramic.
It is found that knowledge of crack number density, orientation distribution, and crack geometry
are all needed in order to predict loss of stiffness. Closed form solutions are derived which are
entirely adequate for most engineering applications.

I. INTRODUCTION

This paper is devoted to the study of the effect of micro-cracks on the elastic response of
brittle solids. It is well known, see for example Case[l] and the references contained therein,
that the elastic moduli can be significantly affected by micro-cracks. Accordingly, a major
aim of this paper is to discuss the effect of micro-crack geometry and density on the loss of
stiffness of brittle solids. It need hardly be emphasized that knowledge of the loss ofstiffness
is a prerequisite for any calculations of micro-crack toughening, etc.

The fundamental paper for most of the recent work on cracked brittle solids, in both
materials science and geophysics, is due to Budiansky and O'Connell[2]. Indeed the self­
consistent analysis provided by these authors provides the starting point for most analyses
ofmicro-cracking in ceramics, see e.g. Refs [3-7]. As far as we are aware all work, thus far,
on the application of the theory to micro-cracked brittle solids assumes that micro-cracks
are penny-shaped and randomly oriented. However, as is discussed by Budiansky and
O'Connell[2J this assumption, while convenient, is not essential. In fact the analysis in Ref.
[2J applies to randomly oriented ellipsoids. From the point ofview ofapplications, perhaps
the most obvious disadvantage of the Budiansky and O'Connell[2J analysis is that it is
restricted to randomly oriented micro-cracks and hence to solids which in the cracked state
are isotropic. This situation was quickly recognized and various authors, with diverse
applications in mind, addressed the problem of formulating a self-consistent analysis for
anisotropic distributions of cracks, see Refs [8-12J. It is perhaps important to emphasize
that the work of Hoenig[8J, Gottesman et al.[9J, Laws et al.[IOJ, and Laws and Dvorak[12]
assumes that the cracks are open. An exception is the paper by Horii and Nemat-Nasser[ll]
which specifically addresses the problem of closed and open cracks. We emphasize that the
considerations of this paper are restricted to open cracks.

In connection with the work on ceramics by Evans[3}, Evans and Faber[4], and Fu
and Evans[5-7J, it is clear that use of a model which assumes a random distribution of
penny-shaped cracks is useful. However, we can construct other models which are, in certain
circumstances, more physically appealing and thus, perhaps, more useful. In particular,
following the suggestion of Fu and Evans[6J, one can construct a model of a close packed
hexagonal aggregate with cracks on the respective interfaces.

Clearly a major problem is that, at the present time, we can only hypothesize potential
micro-crack geometries. It is, therefore, imperative to construct a general model so that one
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can analyze the effects of various crack geometries. Hence, a major part of this paper
consists of a general analysis of the loss of stillness of clastic solids containing various
families of micro-cracks. More precisely the contents of the paper are as follows. In Section
2 we collect some known results on cracks in anisotropic solids. For the purposes of our
later development the crucial quantity is the energy released by the introduction of a single
crack in an infinite solid. We give the required results for elliptical cracks. penny-shaped
cracks and slit cracks. Section 3 contains a new and completely general derivation of the
self-consistent model for distributions of elliptical and slit cracks in anisotropic solids. This
analysis simplifies and extends the results which are currently available. The derivation is
obtained from a variant of a standard argument in fracture mechanics-and is, in fact, a
generalization ofsome analysis given by Budiansky and O'Connell[2]. For technical reasons
it is essential to consider elliptical cracks separately from slit cracks.

Special cases which are particularly relevant in the study of brittle solids are considered
in later sections. In order to be able to compare cracks with different plan forms we make
use of the crack density parameter introduced by Budiansky and O'Connell[2]. It is not
clear to the present authors that the chosen parameter is the most convenient, or physically
attractive, choice. At least it has the merit that it enables us to compare widely different
crack systems-albeit with considerable difficulty. Two geometries which are chosen for
special study are randomly oriented elliptical cracks and randomly oriented slit cracks.
Following Budiansky and O'Connell[2] we investigate the feasibility of replacing elliptical
cracks by penny-shaped cracks. With proper interpretation, the replacement is acceptable.
We go on to discuss aligned slit cracks and penny-shaped cracks and here show how to
recover some results of Hoenig[8], Laws et al.[IO], and Laws and Dvorak[12].

Next, we investigate the stiffness loss due to two distributions of two-dimensionally
oriented slit cracks. This work has no parallel in the literature and would appear to have
some importance in the study of polycrystalline aggregates. In the first place we consider a
family of slit cracks whose normals are randomly oriented in a fixed plane, see also Horii
and Nemat-Nasser[J I]. Second, we consider a hexagonal close packed array with cracks
on various facets as suggested by Fu and Evans[6]. It is noteworthy that both models give
rise to the same stiffness reduction.

Numerical results for the various cases are given in the respective sections. But Section
9 contains some comparisons between different crack systems. It is not easy to summarize
the results. However, it is appropriate to mention that in most current problems in materials
science known to the authors, the dilute results should be entirely adequate. From a practical
point of view the significance of this observation is that one can use explicit formulae for
the loss in stiffness rather than have to resort to numerical methods. Finally, we emphasize
that the results obtained herein indicate that the loss of stiffness of a brittle solid depends
upon both the micro-crack geometry and the density of micro-cracks. As is shown in
Section 9, for given density of micro-cracks, differences in geometry can produce dramatic
differences in effective elastic moduli.

2. PRELIMINARIES

We follow a standard practice in the theory ofcomposite materials and use the notation
introduced by Hill[13]. Fourth-order tensors are denoted by upper case letters, e.g. M, A;
symmetric second-order tensors are denoted by lower case Greek letters, e.g. G, t, and
vectors are denoted by lower case Roman letters, e.g. t, u. A dot denotes the appropriate
inner product.

Consider an anisotropic linear elastic solid whose stiffness is L and whose compliance
is M. Thus, the stress, G, and strain, t, are related through

G = Lt, t = MG. (I)

In this paper, the theoretical development is more easily understood when we make exclusive
use of the compliance M. The most general form of anisotropy which is relevant to our
present discussion is orthotropy with respect to the three coordinates planes OX IX 2X 3- In



Thc cffcct of micro-crack systems on the loss of stiffness of brittle solids 1249

such circumstances, it is best to use standard 6 x 6 engineering notation, so that e l = ell'

S6 = 2e2), etc. For orthotropy, eqns (I) may be written in the component form

el Mil M12 M I3 0 0 0 (jl

e2 M 22 M 23 0 0 0 (j2

[;3 M 33 0 0 0 (j3

= M 44 0 0
(2)

[;4 0"4

[;5 SYM M S5 0 (j5

[;6 M 66 (j6

or, in terms of Young's moduli and Poisson's ratios

[;1 I/E ll -VI2IEll -VI3/E II 0 0 0 (jl

e2 I/E22 - v231E22 0 0 0 (12

CJ I/E.13 0 0 0 O"J

= M44 0 0
(3)

e4 0"4

[;5 SYM M S5 0 (j5

S6 M 66 0"6

Of course, M 44, M 55 and M 66 are merely the reciprocals of the respective shear moduli.
We are also particularly concerned with transversely isotropic materials. When Ox) is

the axis of transverse isotropy

There are corresponding relations between the Young's moduli, Poisson's ratios and trans­
verse shear moduli.

At this point it is advantageous to consider several crack problems.

2.1. Slit cracks
First consider a slit crack defined by

(5)

in an orthotropic elastic solid. The loading of the solid at infinity is prescribed such that it is
compatible with a crack-opening uniform stress (1A. This problem has received considerable
attention and its solution is well known; see e.g. Stroh[14], Lekhnitskii[15], Sih et al.[I 6].
Of major concern in the sequel is the interaction energy due to the crack, or, what is
equivalent, the total energy released by the introduction of the crack under fixed loading
~. It is not difficult to show that the energy released per unit length by introduction of the
slit crack is, see Laws[17]

(6)

The superscript S indicates that this is the A tensor for slits. The only non-zero components
of AS are given by

(7)
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where ct 1 and ct2 are the roots of

Obviously the non-zero components of AS which are listed above only depend upon the
compliances of the solid. This property is needed later.

2.2. Elliptical cracks
Consider next an elliptical crack defined by

(9)

in an infinite solid. When the solid is orthotropic it is not possible, in general, to give an
analytical solution. Rather, one must resort to numerical methods to compute the inter­
action energy, see Hoenig[8}. Fortunately our present problems are adequately handled by
considering an elliptical crack in an isotropic material, and a penny-shaped crack in a
transversely isotropic material.

First, consider the elliptical crack, defined by expressions (9), in an isotropic material.
Then it follows from the results of Budiansky and O'Connell[2] that the interaction energy,
If, is given by

(10)

where the non-zero components of N are given by

c 2(I-v2
)

Ass = E R(k, v). (11)

Here E(k) is the complete elliptic integral of the second kind with argument
k = (l_b 2Ia 2

)1 f2 . Also

R(k, v) = k 2 {(k 2
- v)E(k) +v(l -k2)K(k)} - J

Q(k, v) = k 2 {[k 2 +(I - k 2)]E(k) - v(l - k 2)K(k)} - 1

where K(k) is the complete elliptic integral of the first kind.
We note that the non·zero components of N listed in eqns (II) depend only upon the

aspect ratio bla ofthe ellipse. This observation has important consequences in our discussion
of cracked solids.

2.3. Penny-shaped crack
Next consider a penny-shaped crack

in a solid transversely isotropic with respect to OX3' This problem has been studied by
Shield[18], Chen[I9], Mura[20], Laws[21] and others. The interaction energy is given by
Laws[21] in the form
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8 = 3na>O'A. N,O'A

where the non-zero components of AP are given by

and Yf, Y~ are the roots of
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(12)

(13)

We note that the non-zero components of N are independent of the crack radius a.
In the next section we use the preceding expressions for the interaction energy to obtain

the self-consistent estimates of the effective compliances ofa solid containing micro-cracks.
Obviously, for a penny-shaped crack in an isotropic material N given by eqns (10) and (11)
and AP given byeqns (12)-(14) reduce to a common form to give the standard result, see
e.g. Eshelby[22].

3. THE SELF·CONSISTENT MODEL

The use of the self-consistent model in the study of cracked solids is now extensive.
The pioneering work by Budiansky and O'Connell[2] has been elaborated and extended by
Hoenig[8], Gottesman et a/.[9], Laws et a/.[IO], HorH and Nemat-Nasser[ll] and others.
The aim here is to give a concise, completely general derivation of the self-consistent model
which is apparently not to be found in the literature. Obviously our derivation can be
specialized to give the results ofthe above-mentioned authors. Such results that are necessary
for our purpose will be given in the text.

From the point of view of the study of micro-cracking, it is essential to develop the
theory once and for all. Indeed, since the precise geometry of the micro-crack systems is
often unknown, an important role of the model will be to permit the study of the influence
of various micro-crack geometries on the loss of stiffness. A compact, yet fully general,
derivation of the self-consistent model is furnished by a modification of some standard
arguments in linear elastic fracture mechanics. Thus consider an uncracked solid with
volume V. Next consider the same solid which now contains a family of similar cracks. We
only consider families of cracks whose plan form is either elliptical or rectangular. An
essential feature of the contemplated geometries is that each crack has similar geometry.
Thus when we consider a family of ellipses, these ellipses must have fixed aspect ratio bla.
The same must be true for families of slit cracks. While we only consider a single family of
cracks in anyone solid, the generalization to allow for several families of cracks is trivial.

In our study ofsolids containing micro-cracks, it is essential to consider V to be subject
to macroscopically uniform loading, see Hi1l[13]. For our present purposes it suffices to
consider loading on the outer surface, S, which is compatible with uniform stress a. The
total potential energy of the uncracked elastic solid within V is

Eo = f)O'·a dV-rt·u dS

= -!Va'Mo6

(15)

(16)

where M0 is the compliance tensor of the uncracked solid. Likewise, we can show that the
total energy of the cracked solid is
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E= -1Va'Ma (17)

where M is the effective compliance tensor of the cracked solid. A standard concept in
fracture mechanics indicates that

Cl01 = energy released by the system of cracks = Eo - E. (18)

Up to this point the analysis is exact.
We now use the self-consistent model to estimate the energy released by the system of

cracks. This estimate is dependent on the specific geometry of a typical crack.

3.1. Slit cracks
First, let us suppose that the solid contains a distribution of similar slit cracks of width

2a and length I but with constant aspect ratio 112a» I. The essential step in the self­
consistent method is to estimate the energy released by a typical crack by calculating the
energy released by this single crack in an infinite solid having the effective properties of the
cracked solid. Now for a typical slit crack we see from eqn (6) that

(19)

where the components of AS can be obtained from eqns (7). In view of the self-consistent
methodology, the compliances occurring in eqns (7) and (8) are those of the cracked solid.
Since the micro-crack systems of interest usually involve oriented cracks it is clear that the
total energy released by the system of slit cracks is given by

(20)

where N is the number of cracks per unit volume and { } denotes the average of the
bracketed quantity. Now AS is independent of the aspect ratio lla, so provided crack size
and orientation are not correlated, it follows that

(21)

In eqn (21), {a 2l} denotes the gross average of a2
/, whereas {AS} denotes the orientation

average of {AS}. A natural choice for the dimensionless crack density parameter is suggested
by eqn (21), namely

(22)

With the help of eqns (16)-(22) it now follows that

But M, M 0 and {AS} are symmetric and a is arbitrary; hence

M = M o+1tf3{N}. (23)

For a given orientation distribution, eqn (23) provides the self-consistent equation for the
determination of the effective compliances of the cracked solid.

3.2. Elliptical cracks
Next suppose that our solid contains a distribution of elliptical cracks. For arbitrary

anisotropy the interaction energy is given by eqn (10); however, as emphasized earlier,
analytic forms for the components of N can only be found in special cases. For the time
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being we can proceed in full generality. Indeed a minor variant of the argument that starts
at eqn (18) and ends at eqn (21) shows that the self-consistent estimates for a solid containing
variously oriented elliptical cracks of constant aspect ratio b/a are to be obtained from

M = Mo+~1t(x{N}

where the crack density parameter 0: is here defined by

(24)

(25)

It is useful to note that Budiansky and O'Connel1[2] use a different crack density parameter

(26)

where A is the area of a crack and P its perimeter. As is discussed later it is better to use e,
rather than IX, as the crack density parameter.

Now suppose that our solid contains a distribution of penny-shaped cracks. It is easy
to show that the self-consistent estimates for the effective compliances of a solid containing
variously oriented penny-shaped cracks are to be obtained from

M = M o+1ne{J\P}

where the crack density parameter e is given by

(27)

(28)

4. RANDOMLY ORIENTED ELLIPTICAL CRACKS

In this section we consider a solid which contains a distribution of elliptical cracks.
Thus the governing equation of the self-consistent model is eqn (24)

M =Mo+1nlX{N}. (29)

For randomly oriented ellipses in a solid which is isotropic in its uncracked state, the work
of Budiansky and O'Connell[2] is paramount. While we do not propose to rederive a
significant part of the Budiansky and O'Connell[2] analysis, it is, perhaps, of interest to
show how to derive their equations from the general model given in eqn (29). Thus, we first
note that the non-zero components ofN for a crack normal to the x3-axis are given in eqns
(II). Obviously, the components of N for cracks with alternative orientation can be found
by a simple change ofcoordinates. However, for a completely (three-dimensionally) random
orientation distribution ofcracks, such coordinate changes are not necessary. Rather, we
can use a technique due to Kroner[23] which enables us to compute the orientation average
of N once the components of N for a single orientation are known. In terms of standard
Cartesian tensor notation, Kroner's[23] result may be given as follows. Let Nj/c/ be the
Cartesian tensor components of N. Since all orientations of cracks are equally likely the
orientation average {A} will be isotropic. Hence

(30)

It then follows that

(31)

(32)

SAS 23: 9-D



1254 N. LAWS and J. R. BROCKENBROUGH

where we can compute the right-hand sides of eqns (31) and (32) from the components of
N in any coordinate system since they are invariants. It now remains for us to translate
Kr6ner's[23] result into standard 6 x 6 notation. First we note that

Thus

(33)

(34)

(35)

The Budiansky and O'Connell[2] equations may now be obtained from the component
form of eqn (29), together with eqns (4), (11) and (33)-(35). In particular it is easy to show
that the diagonal components yield

E 16(I-v2
)

Eo=I-<: 45 [3+ (Q+R)E(k)]

G 8(I-v)
Go = 1-<: 45 [4+3(Q+R)E(k)]

(36)

(37)

which coincide with the results of eqns (39) and (44) of Budiansky and O'Connell[2]. We
remark that further algebraic manipulation recovers all of the results given in Ref. [2] for
dry elliptical cracks.

For completeness, we give below the reduced form of eqns (36) and (37) for penny­
shaped cracks. In this case we have

so that

4
Q(k, v) = n(2-v)'

4
R(k, v) = n(2-v)' E(k) = n/2

E 16(I-v2
) (lO-3v)

-=1-&------
Eo 45(2-v)

~ = I _ <: _32-,(-:-1-::-:=-,-v)-'(5--:c--:..v)
Go 45(2-v)

(38)

(39)

as first shown by Budiansky and O'Connell[2]. Since we can express v in terms of E and G,
it is a simple matter to solve eqns (36) and (37) for E, G, v, etc. Numerical solutions for
the various elastic moduli have been given in Fig. 5 of Budiansky and O'Connell[2].

A significant conclusion which is drawn by these authors is that the stiffness loss
predicted by eqns (36) and (37) is insensitive to the aspect ratio of the ellipses and depends
only on <:. This observation prompts the study of families of randomly oriented penny­
shaped cracks which is prevalent in the analysis of micro-cracked ceramics, see Refs [5-7].
For a given aspect ratio (of the family of ellipses) it is necessary to determine the radius, C,
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Fig. 1. Radius of the equivalent penny-shaped crack for a three-dimensional randomly oriented
distribution of elliptical cracks.

of the "equivalent" penny-shaped crack. From eqns (25) and (26) it follows from equality
of the respective crack density parameters, e, that

(40)

assuming equal number densities of elliptical and penny-shaped cracks. To illustrate the
significance of the result in the context of micro-cracked ceramics, let us suppose that the
family of ellipses has equal plan form (not merely similar). Thus

(41)

Figure I shows that the radius of the equivalent penny-shaped crack is particularly sensitive
to aspect ratio. The slope of the curve shows that (cia) is most sensitive to aspect ratio at
(b/a) = 1. From a practical standpoint this means that knowledge of the number density
of cracks, N, and one characteristic size (a) is not sufficient to calculate crack density and
the resultant stiffness reduction. The sensitivity of stiffness reduction to aspect ratio is
perhaps more clearly shown in Fig. 2 where stiffness reduction is plotted against crack
density Na 3 for different values of bla. As bla is reduced from one, the stiffness reduction
varies dramatically. Comparing results at Na 3 =0.2 shows a stiffness reduction of
EIEo = 0.65 for b/a = 1as compared to EIEo = 0.89 for b/a = 0.5. These observations show
that knowledge of aspect ratio is essential in the determination of the correct family of
eqUivalent penny-shaped cracks. Despite the sensitivity ofc to aspect ratio, we can still assert
that it suffices to consider a randomly oriented distribution of penny-shaped cracks.

In order to avoid unnecessary complexity in the sequel, and in view of the preceding
comments we do not consider elliptical cracks. Rather we focus on equivalent penny-shaped
cracks. This decision is important in the next section because we can obtain analytic
expressions for all but the final results.
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Fig. 2. Effect of aspect ratio on Young's modulus for a three-dimensional randomly oriented
distribution of elliptical cracks (va =0.25).

5. ALIGNED PENNY-SHAPED CRACKS

In view of the comments at the end of Section 4, we here consider only a distribution
ofaligned penny-shaped micro-cracks. Hence, the cracked solid will be transversely isotropic
with respect to the common normal to each crack, namely the xl-axis. The self-consistent
equation is from eqn (27)

M = M o+ 11teAP (42)

where the components of the tensor AP are given by eqns (13) and (14). In general, we note
that there is no difficulty in allowing the uncracked material also to be transversely isotropic
with respect to the xl-axis. It is easily shown that the only components of the compliance
tensor, M, which are changed by the introduction of cracks are M 33, M 44 and M 5s-but it
is obvious that M 44 = M 55' Thus, the equations of the self-consistent model are

(43)

(44)

where M) and A~4 are obtained from eqns (13) and (14). It is of interest to observe that
this model has been explored in rather greater depth, but in a different context, by Laws
and Dvorak[12].

At the present time, it is only prudent to consider solids which, when uncracked, are
isotropic. This is particularly advantageous in the analysis of the model because it is not
difficult to nondimensionalize the appropriate equations. Omitting details, we define

it then follows that

_ [Eo/E-V~JI/2
ill - 2

I-vo

p = [2(00/0- vo) + 2[Eo/E-2V~JI/2JI12
I-vo I-vo

(45)

(46)
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1.0 __--r--....----,--'"T"----,

0.'

0.&

0.2 0.4 0.& 0.. 1.0
CrIlck density, £

Fig. 3. Young's modulus for a distribution of aligned penny-shaped cracks.

1.0 r---,---....----,--...,--,
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Fig. 4. Shear modulus for a distribution of aligned penny-shaped cracks.

~ = 1+ Jspw(l-v5)

1257

(47)

(48)

Equations (47) and (48) must be solved to give the loss in stiffness for a given crack density
s. If we interpret correctly, these equations agree with those obtained by Hoenig[8] by
somewhat different methods.

The solutions ofeqns (47) and (48) for £1£0 and GIGo as a function of crack density
s are shown in Figs 3 and 4. The solution for £1£0 shows little influence of initial Poisson's
ratio l'o- Because of the alignment of the cracks E tends to zero asymptotically as crack
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density increases. The results for GIGo are similar although G does not decrease as fast as
Efor any crack density. Note that for EIEo, the linear approximation would hold only over
a small range of crack density. This is in contrast to the results for random pennies.

6. THREE-DIMENSIONALLY RANDOM I.Y ORIENTED SLIT CRACKS

We now consider a randomly oriented distribution of slit cracks. As in Section 2 we
suppose that the length of the crack is I whereas its width is 2a « l. In this case the self­
consistent model is given by eqn (23)

(49)

In order to compare the stiffness loss for different micro-crack systems, it is essential to
make use of a single crack density parameter. Thus we use the parameter £ defined in eqn
(26)

The self-consistent equation now reads

(50)

(51)

As in the case of randomly oriented elliptical cracks we can calculate the orientation average
of N using Kroner's[23] method. Again assuming that the uncracked solid is isotropic, we
can, with minor changes, repeat the analysis of Section 4 to show that

E 1[2£

= 1 - 3"0(1 +v){5-4v)

(52)

Also, we can express I' in terms of E and G and thus solve eqns (51) and (52) for E, G, >',

etc.
The loss of Young's modulus for randomly oriented slits and ellipses is shown in Fig.

1.0 ".-----,-----,-----,--,---r---r-,

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Crack density. £

Fig. 5. Young's modulus for three-dimensional randomly oriented distributions of elliptical cracks
and slit cracks.
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5. We remark that interpretation of the proximity of these curves requires some care-as
is emphasized in Ref. [2].

7. ALIGNED SLIT CRACKS

Consider next a distribution of fully aligned slit cracks in a solid. This particular
problem has been analyzed in some detail by Laws et al.[IO]. However, these authors were
interested in composite laminates and so their analysis, while fully general, is not well suited
to our present purpose. In any event, the self-consistent equations are here

(53)

For the crack alignment specified in expressions (5) the only non-vanishing components of
AS are given by eqns (7) and (8). It therefore follows that the only compliances which change
because of cracks are M 22, M 44, and M 66' The first pair of these is given by the equations

2
o 7t e S

M 66 = M 66 + 4 A66

whereas the shear compliance M 44 is given by

(54)

(55)

(56)

We immediately specialize these results to the case in which the uncracked solid is isotropic,
so that

o 1
M n = Eo'

o 0 1
M 44 = M 66 = Go'

Now let E be the Young's modulus of the cracked solid perpendicular to the crack faces

(57)

Also let Gil' Gm be the shear moduli of the cracked solid associated with loading modes II
and III, respectively

I
M 66 =-G '

II

1
M 44 =-G .

III
(58)

A series of straightforward, but tedious, calculations shows that if we define

[
GO/Gil - Vo [1- vij JI/2JI/2

a = 2(1 +vo)'Eo/E-vij + 2 Eo/E-vij

then

Go 7t
2e [Eo 2JI/2[I-voJI/2-=I+-a --Vo -- .

Gil 8 E 1+vo

(59)

(60)

(61)
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Fig. 6. Young's modulus for a distribution of aligned slit cracks in an isotropic solid.
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Fig. 7. Mode n shear modulus for a distribution of aligned slit cracks in an isotropic solid.

These equations serve to evaluate E/Eoand GII/Go for a given crack density t. In addition
we can show that GtII/Gois given explicitly as

(62)

The solutions to eqns (60) and (61) for E/Eoand Gil/GO are expressed as a function of initial
Poisson's ratio in Figs 6 and 7. These results are similar to those for aligned pennies (Figs
3 and 4) in that both EIEo and Gil/GO approach zero asymptotically as crack density
increases with E/Eo decreasing faster than Gil/GO' The result for GlIl/GO(Fig. 8) is inde­
pendent of initial Poisson's ratio and also approaches zero asymptotically.
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Fig. 8. Mode III shear modulus for a distribution of aligned slit cracks in an isotropic solid.
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Fig. 9. Hexagonal array with cracks at interfaces: equal crack densities on planes 0 = 0, ±7(/3.
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8. TWO-DIMENSIONALLY ORIENTED SLIT CRACKS

In this section we examine the stiffness loss due to two distributions of two-dimen­
sionally oriented slit cracks. In the first place we consider a family of slit cracks whose
normals are arbitrarily oriented in the XI-X2 plane-Le. the axis of the crack lies along the
xraxis. Second we consider a hexagonal close-packed polycrystalline array with cracks on
various facets as suggested by Fu and Evans[6], see Fig. 9. For simplicity we assume equal
crack number density on the three families of parallel faces. Both models are susceptible of
refinement and generalization. At the present time the two models furnish an additional
potential geometry for microstructures in cracked ceramics. It is interesting to declare in
advance that the assumed geometry of cracks in an otherwise isotropic solid guarantees
transverse isotropy and that both geometries give rise to the same stiffness reduction. In
addition we are able to obtain explicit formulae-which is significant from the point of
view of applications.

It is clear that the cracked solid will be transversely isotropic with respect to the X3­

axis. Thus, the compliance tensor of the cracked solid is of the form of eqns (3) and (4)
with respect to any set ofaxes OX'IX2X 3 which are obtained from OX IX2X3 by rotation through
an angle 8. In addition, transverse isotropy guarantees that the components of the AS tensor
with respect to OX'\X2X3 are precisely the same as those with respect to OX\X2X3'
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A concise derivation of the models can be given by using the device suggested by
Bristow[24]. In order to compute the average interaction energy {If} we have so far averaged
over the relevant orientations of the cracks under fixed loads a. However, as noted by
Bristow[24] we can equally well leave the cracks fixed and average over all orientations of
the applied load. Thus, we return to eqn (19) which gives us the required expression for the
interaction energy due to a single slit crack located at

(63)

under applied stress a

(64)

Next we rotate the applied stress field a through an angle e to give the field a'(8) which is,
of course, determined from the usual tensor transformation. The only components of
interest are

0'22(8) = all sin28-U 12 sin 8 cos 8+a n cos2 8,

0'23(8) = -0'13 sin 8+0'23 cos e,

0'21 (8) = (0'22 - a II) sin 8 cos 8+ a 12(COS2 8 - sin2 8).

(65)

Remembering that the components of N are not changed by rotation of the axes through
an angle 8, it follows that the interaction energy for the crack, given by (63), under loading
a'(8) is

(66)

Consider first the case of two-dimensionally randomly oriented slits. Ifwe again assume
that crack size and orientation are not correlated, we can show that

nE rn

{If} = 8N Jo a' (8)' Aa' (8) d8

where the non-vanishing components of {A} are given by

{ALI = {A}22 = H3An +A66),

{A}12 = HA 22 -A66),

{A}44 = {A}55 = !A44 ,

{A}66 = HA 22 +A66).

We note that

(67)

(68)

as is required for transverse isotropy with respect to OX3'

Next consider the case of the hexagonally packed array. Here each family of parallel
faces contains one third of the total number of cracks. Also to ensure transverse isotropy
we again need to assume that crack size is not correlated to crack orientation. In this case
it is clear that
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{C} = j[C(0)+C(n/3)+C( -n/3)].
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It is significant that the result of this simple averaging procedure is precisely the same as
the result for two-dimensionally randomly oriented slits given in eqns (67) and (68). Thus
the self-consistent model in either case is

(69)

where the components of {A}S are given in eqns (68).
Finally we exhibit the explicit form of the equations where the uncracked solid is

isotropic with Young's modulus Eo, Poisson's ratio Vo and shear modulus Go. Since the
cracked material is transversely isotropic with respect to OX3, we denote the axial shear
modulus by GA , the transverse shear modulus by GT and the transverse Young's modulus
by ET • In terms of the compliances

(70)

It is evident physically, and demonstrable mathematically from eqn (69), that the only
compliances which are changed by the micro-crack distribution are M 1h M 12, M 44 = M 55

and M 66' But since

it suffices to concentrate on M 1 " M44 and Mw From eqn (8) we note that transverse
isotropy implies that (Xl = (X2 = I, so from eqns (7) we have

But, the simplification afforded by isotropy of the uncracked solid shows that

Thus from eqns (68)

{ S} I v~A II =---,
ET Eo

{N}44 = 2~A'

{ S} ( 1 v~)A 66=2 --- .
HI' Eo

We may now substitute eqns (71) into eqn (69) to obtain the final results

(71)
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Fig. 10. Transverse Young's modulus for distributions of two-dimensionally oriented slit cracks in
isotropic materials.

GT 4-n 2
£

Go = 4-n 2£vo

(72)

(73)

(74)

It is quite remarkable that the two geometries considered above give rise to the explicit
formulae (72)-(74) for the loss of stiffness due to micro-cracks. The results for E/Eo for
varying values of initial Poisson's ratio are shown in Fig. 10. As in the case of random
pennies and slits, stiffness is reduced to zero at a particular value of crack density. From
eqns (72) and (73) we see that both ET and Gr vanish when I:: = 4/n2

• Although GA , as given
in eqn (74), does not vanish until the crack density £ = 8/1t 2

, it is clear that £ = 4/1t 2 is the
maximum permissible value of the crack density, see Fig. II. However, it is unlikely that
the self-consistent method would apply at such extremes. The result for the transverse shear
modulus Gr/Go (Fig. 12) is similar to results for random pennies and slits. Poisson's ratio
v12 changes for this crack system and is given by

The variation of v12 with crack density is plotted in Fig. 13 and of course depends on the
initial Poisson's ratio.

9. COMPARISON OF CRACK SYSTEMS

Despite our use of a universal crack density parameter

(75)

comparison of the effect of different crack systems is not easy. Even for materials which
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Fig. II. Axial shear modulus for distributions of two-dimensionally oriented slit cracks in isotropic
materials.
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Fig. 12. Transverse shear modulus for dislributions of two-dimensionally oriented slit cracks in
isolropie materials.

are initially isotropic, the most obvious problem is that micro-crack geometry can induce
macroscopic anisotropy. Indeed, of the various geometries considered here, only randomly
oriented slits or ellipses yield overall isotropic response. On the other hand, two-dimensional
randomly oriented slit cracks (or hexagonal close packed aggregates) lead to overall trans­
verse isotropy as do aligned penny-shaped cracks. In addition, aligned slits lead to ortho­
tropic materials.

At this stage it is essential to recall one of our basic premises that all cracks are open
under the considered loading. We emphasize that the results obtained in this report only
hold for the case of open cracks. In fact it is not difficult to see that under certain types of
loading this will not be the case. Consider, for example, pure shear of the two-dimensionally
random distribution of slit cracks. Here it is clear that half of the cracks will be open
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Fig. 13. Poisson's ratio v12 for distributions of two-dimensionally randomly oriented slit cracks in
isotropic materials.
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Fig. 14. Composition of stiffness reduction in isotropic materials for different crack systems
(vo '" 0.25).

whereas the other half will remain closed under the stated loading. This problem, and other
related issues, will be discussed in a future paper.

Returning now to a quantitative assessment of the effect of various micro-crack geo­
metries, let us consider a family ofcracked materials with common crack density e. In order
to illustrate the effect ofgeometry on the loss of stiffness of the solid, we consider the worst
possible scenario. Thus for aligned slits or pennies we need to evaluate Young's modulus
for extension normal to the slits or pennies. For two-dimensional randomly oriented slits­
or slits on the faces of a hexagonal close packed aggregate-we evaluate Young's modulus
in any direction in the basal plane. Of course for three-dimensional randomly oriented slits
or ellipses, Young's modulus is independent of direction. The results are given in Fig. 14.
We note that the reductions in Young's modulus for three-dimensional randomly oriented
slits or ellipses are quite comparable, as are the reductions for aligned slits and pennies.
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Choice of eas the appropriate density measure, see eqn (75), demands that care is essential
if any general inferences are to be drawn from Fig. 14. Clearly the problem is that e is the
product ofcrack number density and a geometrical factor. Perhaps it is easiest to illustrate
the point with reference to dilute distributions of cracks-and as will now be shown, it is
likely that the dilute limit will be completely satisfactory in many applications. In the case
of aligned slits the Young's modulus normal to the slits is, from eqn (60)

(76)

whereas for aligned pennies, from eqn (47)

(77)

Also, for two-dimensional randomly oriented slits we have, from eqn (72)

FinaIly, for three-dimensional randomly oriented slits we have, from (51)

E n2

- = 1 - - (I +vo)(5-4vo)e
Eo 30

and for randomly oriented pennies, from eqn (38)

!... = 1 _ 16(l-vij)(IO-3vo) e.
Eo 45(2- vo)

(78)

(79)

(80)

Thus when Vo = 0.25, as in Fig. 14, we can easily compute the residual stiffness for the
various geometries. By way ofiIlustration take e = 0.05, then the residual Young's modulus
is as follows:

three-dimensional randomly oriented slits 92%

three-dimensional randomly oriented pennies 91 %

two-dimensional randomly oriented slits 88%

aligned slits 77%

aligned pennies 75%.

Thus, as noted earlier, the dilute approximation willbe entirely adequate for most applications.
From eqns (76), (78) and (79) it is easy to compare the relative numbers of similar slit

cracks with different orientations which would be needed to produce the same loss of
Young's modulus. Thus, suppose that the same loss of stiffness is produced by N. aligned
slits, N2 two-dimensional randomly oriented slits or N3 three-dimensional randomly
oriented slits. Then

Again suppose that n. aligned pennies produce the same loss of stiffness as n3 randomly
oriented pennies, then from eqns (77) and (80)
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10 - 3vo
1Ia = 15(2-vo)1I 3 '

It is more difficult to compare the numbers of aligned slits or pennies which would produce
the same loss of stiffness. The problem is that one needs to have some information about
the respective geometries. Until some experimental evidence is available it is of little value
to compare hypothetical cases. In any case, the required results are easily obtained from
eqns (76) to (80).

In conclusion we observe that knowledge of crack number density, orientation dis­
tribution and crack geometry are essential in order to predict the loss in stiffness of a
cracked solid.

Ackllowledgel1/ellls-The work of one of us (N. Laws) was supported in part by the Aluminum Company of
America. We thank Mr R. L. Rolf and Dr J. L. Teply for many helpful discussions.

REFERENCES

I. E. D. Case, The effect of microcracking upon the Poisson's ratio for brittle materials. J. Maler. Sci. 19,3702··
3712 (1984).

2. B. Budiansky and R. J. O'Connell, Elastic moduli ofa cracked solid. Int. J. Solids SlruClures 12, 81-97 (1976).
3. A. G. Evans, Microfracture from thermal expansion anisotropy-I. Single phase systems. ACla Metall. 26,

1845 (1978).
4. A. G. Evans and K. T. Faber, Crack growth resistance of microcracking brittle materials. J. Am. Ceram. Soc.

67,255-260 (1983).
5. Y. Fu and A. G. Evans, Microcrack zone formation in single phase polycrystals. Acla Metall. 30, 1619-1625

(1982).
6. Y. Fu and A. G. Evans, Some effects of microcracks on the mechanical properties of brittle solids-I. Stress,

strain relations. Acla Metall. 33,1515-1523 (1985).
7. Y. Fu and A. G. Evans, Some effects of microcracks on the mechanical properties of brittle solids-II.

Microcrack toughening. Acta Metall. 33,1525-1531 (1985).
8. A. Hoellig, Elastic moduli of a non-randomly cracked body. Inl. J. Solids Structures 15, 137-154 (1979).
9. T. Gottesman, Z. Hashin and M. A. Brull, Effective elastic moduli of cracked fiber composites. In Advances

in Composite Materials (Edited by A. R. Bunsell, A. Martrenchar, D. Menkes, C. Bathias and G. Verchery),
pp. 749-758. Pergamon Press, Oxford (1980).

10. N. Laws, G. J. Dvorak and M. Hejazi, Stiffness changes in unidirectional composites caused by crack systems.
Mech. Mater. 2,123-137 (1983).

II. H. Horii and S. Nemat-Nasser, Overall moduli of solids with microcracks: load induced anisotropy. J. Mech.
Phys. Solids 31, 155-171 (1983).

12. N. Laws and G. J. Dvorak, The effect of fiber breaks and aligned penny-shaped cracks on the stiffness and
energy release rates in unidirectional composites. Int. J. Solids Structures 23,1269-1283 (1987).

13. R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357-372
(1963).

14. A. N. Stroh, Dislocations and cracks in anisotropic elasticity. Phil. Mag. 3,625-646 (1958).
15. S. G. Lekhnitskii, Anisotropic Plates. Gordon and Breach, New York (1968).
16. G. C. Sih, P. C. Paris and G. R. Irwin, On cracks in rectilinearly anisotropic bodies. In!. J. Fracture Mech.

I, 189-203 (1965).
17. N. Laws, A note on interaction energies associated with cracks in anisotropic media. Phil. Mag. 36, 367-372

(1977).
18. R. T. Shield, Notes on problcms in hexagonal aeolotropic materials. Pmc. Comb. Phil. Soc. 47,401-409

(1951).
19. W. T. Chen, Some aspects of a flat elliptical crack under shear stress. J. Math. Phys. 45, 213-223 (1966).
20. T. Mura, Micromechanics of Defects in Solids. Martinus Nijhoff, The Hague (1982).
21. N. Laws, A note on penny-shaped cracks in transversely isotropic materials. Mech. Mater. 4, 209-212 (1985).
22. J. D. Eshelby, Elastic inclusions and inhomogeneities. In Progress ill Solid Mechanics (Edited by I. N. Sneddon

and R. Hill), Vol. 2. North Holland, Amsterdam (1957).
23. E. Kroner, Berechnung der elastichen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z.

Pllys. 151,504-518 (1958).
24. J, R. Bristow, Microcracks, and the static and dynamic elastic constants of annealed and heavily cold-worked

metals. Sr. J. Appl. Pllys. 11,81-85 (1960).


